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The existence of beyond mean-field quasicycle oscillations in a simple spatial model of predator-prey
interactions is derived from a path-integral formalism. The results agree substantially with those obtained from
analysis of similar models using system size expansions of the master equation. In all of these analyses, the
discrete nature of predator-prey populations and finite-size effects lead to persistent oscillations in time, but
spatial patterns fail to form. The path-integral formalism goes beyond mean-field theory and provides a focus
on individual realizations of the stochastic time evolution of population not captured in the standard master-
equation approach.
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When constructing models of biological phenomenon, ob-
servations of stable periodic behavior have generally been
taken to imply that the model will contain a stable limit
cycle. In the context of ecological modeling, both simple
heuristic arguments and field observations support predator-
prey oscillations in ecosystems. However, the simple differ-
ential equation �mean-field� models of predator-prey dynam-
ics do not exhibit limit cycles �1,2�. Several authors have
addressed this difficulty by developing spatial individual
level models �ILMs� that incorporate the stochastic effects of
individual predator-prey interactions as in, for example,
�3–6�. These models yield limit cycles �6� or stochastically
induced cycles dependent on space �3–5�. However, recent
work on a zero-dimensional model has shown that intrinsic
noise without space is sufficient to generate temporal oscil-
lations in predator-prey populations �7�. Generalization of
this work to space shows oscillations in time but fails to
exhibit oscillations in space �8�.

The purpose of the present work is to develop a modified
version of the spatial ILM of predator-prey interactions in �8�
and analyze the oscillatory fluctuations using path-integral
techniques. Our model, which includes the motion of both
predator and prey, does not have a hard constraint on the
number of organisms that can be present in a patch and will
be found to have oscillations at the global scale consistent
with previous results �8�. We map the master equation to a
bosonic field theory �9–12� to obtain a simple derivation of
coupled Langevin equations for the fluctuations of predator-
prey populations.

I. DEFINITION OF THE MODEL
AND MASTER EQUATION

Consider a single well-mixed patch of volume V. Species
A is a predator for species B. We then have the following
reactions:

B→
b1

BB ,

B→
d1

� ,

AB →
p1/V

A ,

AB →
p2/V

AA ,

A→
d2

� . �1�

We give the rates of the two body reactions an inverse V
dependence, which is interpreted as the volume scaling of
the probability in a volume V that the two organisms will be
close enough to interact.

The above model contains a serious defect: in the absence
of predation, the prey population diverges to infinity �in
mean field�. Even with predators present, this defect mani-
fests itself through the presence of nongeneric initial-
condition-dependent oscillations. To overcome this defect,
there exist a variety of options to induce a finite “carrying
capacity” for prey. Each option has advantages depending on
the predator-prey system being described although many of
the predictions end up being generic �13�. One option is to
restrict the total patch population to some number N, includ-
ing empty space �i.e., NA+NB+NE=N�. This is the “urn
model” description �14�. In spatial models, N is often chosen
to be 1, which is equivalent to a coarse-graining scheme
which takes a patch to be the space required for one organ-
ism. When N�1 models are generalized to space, a patch is
a locally well-mixed area. Space is added as diffusion be-
tween such patches. In our model, we adopt the perspective
that a patch is a well-mixed region with many organisms but
do not constrain the population to a given N, choosing in-
stead to obtain a finite carrying capacity by allowing the
death rate to increase with concentration. Equivalently, we
could have simply included an intraspecies competition re-
action. An advantage of the current approach is that it avoids
nonlinear diffusive cross terms in spatial urn models that do
not seem to change the dynamics substantially from versions
without the cross terms �8�. Additionally, urn models lead to
complications in the interpretation of model parameters at
the mean-field level and in the master equation due to the
fact that reaction rates in urn models must be combined with
the joint probability for drawing the reactants from the urn
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prior to use in the master equation or mean-field description
leading to complex combinations of parameters �14�. With
the soft constraint applied here, the reaction rates have simi-
lar predictable meanings at every level of description from
master equation to mean field.

Formally, we include the concentration dependence of the
death rate by noting that nA=NA /V is small;

d1�nA� = d1�0� + cnA + O�nA
2�, c = d��0� � 0. �2�

We can now write a master equation for the patch,

�tP�m,n� = d1�− nP�m,n� + �n + 1�P�m,n + 1��

+ c�− n2P�m,n� + �n + 1�2P�m,n + 1��

+ b1�− nP�m,n� + �n − 1�P�m,n − 1��

+ p1�− mnP�m,n� + �n + 1�mP�m,n + 1��

+ p2�− mnP�m,n� + �m − 1��n + 1�P�m − 1,n

+ 1�� + d2�− mP�m,n� + �m + 1�P�m + 1,n�� ,

�3�

where m denotes the number of predators and n denotes the
number of prey. This master equation defines the time evo-
lution of the probability distribution of population states.

II. MAPPING TO PATH-INTEGRAL FORMULATION

To analyze the predator-prey dynamics, we map Eq. �3� to
a field theory. This is done using the standard Doi formalism
�9� to obtain a second-quantized Hamiltonian and bosonic
coherent states to map the resulting theory to a path integral.
For our approach and helpful reviews, see �15,16�. The map-
ping is achieved by introducing the state vector

��� = �
m,n

P�m,n��m,n� �4�

and the operator pairs a, â, b, and b̂ such that

a�m,n� = m�m − 1,n� ,

â�m,n� = �m + 1,n� ,

�a, â� = 1,

b�m,n� = n�m,n − 1� ,

b̂�m,n� = �m,n + 1� ,

�b, b̂� = 1. �5�

Finally, all other commutators are zero. We can then rewrite
the dynamics given by the master equation �Eq. �3�� as a
Schrödinger-type equation. Here

�t��� = − Ĥ�a, â,b, b̂���� . �6�

We can now specify the Hamiltonian �more accurately
Liouvillian �12�� operator by multiplying the master equation

by the state vector �m ,n�, summing over m and n and apply-
ing the algebra of Eq. �6� to replace m and n by various

combinations of the operators a , â and b , b̂. From this alge-
bra, working out the structure of the Hamiltonian is direct
and simple. As an example, we work out the term corre-
sponding to prey birth explicitly,

b1�
m,n

�− nP�m,n� + �n − 1�P�m,n − 1���m,n�

= b1�
m,n

�− b̂bP�m,n� + �n − 1�P�m,n − 1���m,n�

= − b1b̂b��� + �
m,n

nP�m,n��m,n + 1�

= − b1b̂b��� + b1b̂b̂b��� . �7�

Other terms are treated analogously. With normal order-
ing, this leads to the Hamiltonian

Ĥ = b1�b̂b − b̂2b� + d1�b̂b − b� +
c

V
�b̂2b2 − b̂b2�

+
p1

V
�âab̂b − âab� +

p2

V
�âab̂b − â2ab� + d2�âa − a� .

�8�

Expectation values of functions of the random variables m
and n are given by

�f� = �0,0�ea+bf�â,a, b̂,b�e−Ĥ�a,â,b,b̂�t���0�� . �9�

Using bosonic coherent states, we write Eq. �9� as a path
integral resulting in a Lagrangian description of the dynam-
ics with generalization to space �10,11�. Since we are inter-
ested in persistent oscillations around the only stable fixed
point in the system, our choice of initial conditions is irrel-
evant and can be ignored. To link patches together for a
spatial description, we define a lattice of patches and demand
that each organism carry out a random walk on the lattice
with given hopping probabilities for predator and prey. The
continuum limit of a random walk is well known to be dif-
fusion. We thus define diffusion rates D1 and D2 for predator
and prey, respectively, and add diffusion operators to the
Lagrangian. Careful manipulation of the field operators leads
to the same results, provided the hopping probability for a
species � scales as �	1 /a2, where a is the lattice constant
taken to 0 in the continuum limit. Then D=lima→0 a2�. The
resulting Lagrangian density is given by

L = â�ta + b̂�tb − D1â�2a − D2b̂�2b + H�a, â,b, b̂� .

�10�

With fields derived from boson operators, the Lagrangian
form of the master equation is not simply interpreted. This is
because the field variables in the Lagrangian are not simply
related to the physical variables of population number. This
proves to be the source of difficulties in deriving correlation
functions that are physically meaningful. To address this dif-
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ficulty, we use a standard semicanonical Cole-Hopf transfor-
mation �17� to transform the field variables to density vari-
ables,

a = ze−ẑ, â = eẑ, �11�

b = �e−�̂, b̂ = e�̂. �12�

This formulation has the advantage that z and � can be
directly interpreted as the density variables for predator and
prey, respectively, while �̂ and ẑ generate noise terms at qua-
dratic order. The transformed Lagrangian takes the form

L = ẑ�tz + �̂�t� − D1ẑ�2z − D1z��ẑ�2 − D2����̂�2 − D2�̂�2�

− b1��1 − e�̂� + d1��1 − e−�̂� +
c

V
�2�1 − e−�̂�

+
p1

V
z��1 − e−�̂� +

p2

V
z��1 − eẑ−�̂� + d2z�1 − e−ẑ� . �13�

In this form, the Lagrangian has diffusive noise and dif-
ficult to handle exponential terms. In Sec. III, we exploit the
small parameter 1 /V to resolve these difficulties and analyze
the theory.

III. DERIVATION OF MEAN-FIELD THEORY AND
QUASICYCLES FROM LARGE V EXPANSION

From the Lagrangian in Eq. �13�, we can proceed directly
by rewriting the fields as

ẑ →
ẑ


V
, �̂ →

�̂


V
,

z = V� + 
V�, � = V� + 
V	 , �14�

and inserting them into the Lagrangian. These forms are in-
tended to capture Gaussian fluctuations in the spirit of the
traditional system size expansion of the master equation �18�
while directly manipulating the population variables. The
fields ẑ and �̂ have a mean-field value of 0 due to conserva-
tion of probability �16�. This means that within the Gaussian
approximation, the leading-order term in those fields is a
small correction of order of 1 /
V as above.

To derive the mean-field theory and the fluctuations, we
then insert the right-hand side forms of the fields in Eq. �14�
into the Lagrangian Eq. �13� and retain only leading and next
to leading order, resulting in an effective Lagrangian of the
form

L = 
VL1 + L2 + O�1/
V� . �15�

Deriving each of these terms is straightforward. For pur-
poses of illustration, we will carry out the expansion for the
prey birth term explicitly,

b1��1 − e�̂� = b1�V� + 
V	��−
�̂

V
−

�̂2

2V
�

= b1�− 
V�̂� −
�̂2�

2
− �̂�� . �16�

Carrying this out for each term in the Lagrangian and
collecting terms yields at order 
V,

L1 = �̂�t� + ẑ�t� − D1ẑ�2� − D2�̂�2� − b1��̂ + d1��̂ + c�̂�2

+ p1�̂�� + p2�̂�� − p2ẑ�� + d2ẑ� . �17�

Minimizing this term provides the mean-field theory. For
V→
, this minimum is exact. The Euler-Lagrange equations
are

�L1

�ẑ
= �t� − D1�

2� − p2�� + d2� = 0,

�L1

��̂
= �t� − D2�

2� − b1� + d1� + c�2 + p1�� + p2�� = 0.

�18�

These are the standard Lotka-Volterra equations general-
ized to include space. They do not satisfy the criteria for
pattern formation in predator-prey equations �reviewed in
�19��, which generically require more complex predation in-
teractions. The long-time dynamics relax to spatially uniform
predator-prey populations with magnitudes given by the
fixed points of the ordinary differential equations obtained by
dropping the diffusion operator in Eq. �18� above.

At next to leading order, we Fourier transform and switch
to matrix notation, defining

x = ��

	
�, y = � ẑ

�̂
� . �19�

By simply collecting terms as in Eq. �14� we can write
down L2 as

L2 = i�yTx + yTAx −
1

2
yTBy . �20�

The matrices are given by

A = � D1k2 − p2�

�p1 + p2�� D2k2 + c�
� �21�

and

B = �2�d2 + D1k2�� − p2��

− p2�� 2�b1 + D2k2��
� . �22�

We now note that the vector y is a response field in the
Martin-Siggia-Rose response function formalism �20� for
Langevin equations �21�. Thus the fluctuations around mean
field in the path integral are coupled Langevin equations. The
resulting Langevin equations with the appropriate noise and
correlations are

− i�x = Ax + ��� ,

�i��� j�− ��� = Bij . �23�

These equations are of the same form as the equations re-
ported in �7,22� and are easily solved using simple linear
algebra manipulations �22�,

x = − �A + i��−1���  D���−1��� ,
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→x1 = � = − det�D�−1�D111 − D122� ,

x2 = 	 = − det�D�−1�D211 − D222� . �24�

To obtain information from these solutions, we calculate
the average power spectrum which captures oscillations but
is free of phase cancellations �7�. The average power spec-
trum is obtained by taking the amplitude squared and aver-
aging. For predator fluctuations this gives

�x1x1
�� =

�k + �k�
2

��2 − �k
2�2 + �k

2�2 , �25�

with

�k = B11�k�A22
2 + B22�k�A12

2 ,

�k = B11�k� ,

�k
2 = D1k2�D2k2 + c�� + p2�p1 + p2��� � 0,

� = − A11 − A22. �26�

The power spectrum contains a nontrivial peak in � cor-
responding to the expected temporal oscillations. The peak in
k is at zero wave number as can be seen from the strictly
increasing functions of k present in the spectrum. This rules
out spatial pattern formation. These results are in qualitative
agreement with results from expansion of the master equa-
tion urn models �7,8�. Additional work will investigate the
scaling of population fluctuations near extinction transitions
and in disordered environments. These applications are of
clear ecological interest and are difficult to study with system
size expansions. However, they can be studied using well-
known methods from field theory in the functional integral
formalism.
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